

TENIKH, MAJEYTIKH / TYNAIKOADTI & TIAIDIATPIKH KANIKH

Hemodynamic Assessment basics, shunts and resistance calculations

Dr Aphrodite Tzifa, MD(Res), FRCPCH

Director, Paediatric Cardiology Department, Mitera Children's Hospital, Athens, Greece

September 10, 2003

No conflicts of interest to declare

DIAGNOSTIC CATHETERISATION

- Pressure measurement
- Obtain Sats

FOR:

- Cardiac output measurement
 - Fick method
 - Thermodilution
- Vascular resistance
- Shunt detection
- Gradients and valve stenoses

Right Heart Catheterisation Right Atrial Pressure

- "a" wave
 - Atrial systole
- "c" wave
 - Small upwards deflection in early systole
- "x" descent
 - Relaxation of RA
 - Downward pulling of tricuspid annulus by RV contraction
- "v" wave
 - End of systole. Corresponds with atrial filling against a closed TV
 - Smaller than a waveal compliance & amount of blood return
- "y" descent han a wave
 - TV opening and RA emptying into RV

Right Heart Catheterisation Abnormalities in RA Tracing

- Low mean atrial pressure
 - Hypovolemia
 - Improper zeroing of the transducer

Elevated mean atrial pressure (pulsatility in FV trace)

- Right ventricular failure
 - Valvular disease (TS, TR, PS, PR)
 - Left heart failure (MS, MR, cardiomyopathy)
- Increased pulmonary vascular resistance
- Pericardial effusion with tamponade physiology

Inspiratory Effect on Right Atrial Pressure

- Normal physiology
 - Inhalation: Intrathoracic pressure falls \rightarrow RA pressure falls
 - Exhalation: Intrathoracic pressure increases → RA pressure increases

Kern MJ. Right Heart Catheterization. CATHSAP II CD-ROM. Bethesda, American College of Cardiology, 2001.

RV Tracing

- Rapid upstroke representing isovolume contraction
- Downslope presents isovolumetric relaxation

Abnormalities in RV Tracing

- Systolic pressure overload
 - PHT
 - Pulmonary valve stenosis
 - Right ventricular outflow obstruction
 - Supravalvular obstruction
 - Increased pulmonary vascular resistance

 High diastolic pressure (tamponade, restrictive cardiomyopathy, diastolic dysfunction – ToF)

PA Tracing

- Biphasic
- Dichrotic notch often well seen
- PAd = PCW = LA = LVEDp

Right Heart Catheterisation Abnormalities in PA Tracing

- Elevated systolic pressure when mean PAp:
- > 25mmHg (Mild), > 35mmHg (Moderate), >45mmHg (Severe)
 - PHT
 - MS
 - MR
 - CHF
 - Restrictive cardiomyopathy
 - Left-to-right shunt
 - Pulmonary disease

Pressure Measurement Wedge Pressure

- Wedge Pressure
 - Pressure obtained when an end-hole catheter is positioned in a "designated" blood vessel with its open end-hole facing a capillary bed, with no connecting vessels conducting flow into or away from the "designated" blood vessel between the catheter's tip and the capillary bed
 - True wedge pressure can be measured only in the absence of flow, allowing pressure to equilibrate across the capillary bed

Baim DS and Grossman W. Cardiac Catheterization, Angiograp

Baltimore:

Right Heart Catheterisation Left Atrial and PCW Pressure

- PCW tracing "approximates" actual LA tracing but is slightly delayed since pressure wave is transmitted retrograde through pulmonary veins
- Diastolic PAp = PCWp = LAp = LVEDp

Baim DS and Grossman W. Cardiac Catheterization, Angiography, and Intervention. 5th Edition. Baltimore: Williams and Wilkins, 1996.

Right Heart Catheterisation Right vs Left Atrial Pressure

• Normal LA pressure slightly higher than RA pressure

Kern MJ. Right Heart Catheterization. CATHSAP II CD-ROM. Bethesda, American College of Cardiology, 2001.

Right Heart Catheterisation Abnormalities in PCWP Tracing

• PCWP not equal to LV end diastolic pressure

- Mitral stenosis
- Cor triatriatum
- Pulmonary venous obstruction
- Decreased ventricular compliance

Right Heart Catheterisation Abnormalities in PCWP Tracing

• Severe Mitral Regurgitation

Left Atrial Pressure

"V" wave more pronounced than "a" partly because of pulmonary vein contraction

Dominant a wave: Either LA outlet obstruction or TAPVC

In MR, "v" wave becomes enlarged, representing increased atrial filling via an incompetent LAVV.

Left Ventricular Pressure

Systole

• The upstroke of the LV trace tends to be more rapid with a flatter plateau phase

• Diastole

• The diastolic upstroke tends to have a more pronounced end diastolic hump

Left Heart Catheterisation Abnormalities in LV Tracing

• Severe Aortic Stenosis

Left Heart Catheterisation Abnormalities in LV Tracing

• Elevated LVEDp

- CHF
- Diminished compliance
- Hypertrophy
- Tamponade
- Mitral regurgitation
- Pericardial constriction
- Restrictive cardiomyopathy

Cardiac Catheterisation Shunts

- SVC
- IVC
- RA
- PA
- RPA / LPA
- LA
- Ao
- PVs

Shunt Detection & Measurement

• Fick Principle

- Pulmonary circulation (Qp) utilises PA and PV saturations
- Systemic circulation (Qs) utilises Ao and mixed venous Sats

$$O_2 \text{ content} = 1.36 \text{ x Hgb x } O_2 \text{ saturation}$$
$$Qp = \frac{O_2 \text{ consumption}}{(PvO_2 - PaO_2) \text{ x 10}}$$

Shunt and PVR assessment

Qp : Qs Ratio =

 $(AoO_2 - MVO_2) / PvO_2 - PaO_2$

Sats: (Ao-MVO₂) / (PV-PA)

PVR (WU.m²) = Transpulmonary gradient (MPA- LA) / PA flow in lt.min.m²

Cardiac Output /PVR Measurement XMR method

Cardiac catheterisation:

Right heart catheter and assessment of PAp and LAp (or PA wedge)

MRI:

Assess Qp (and shunts / anatomy as required)

2

PVR (WU.m)= Transpulmonary gradient (MPA- LA (or PA₂wedge) /

PA flow in lt.min.m *

 * selected phase contrast flow images at rest and with 100 FiO $_{2}^{\prime}$ / NO $_{2}^{\prime}$

PVR Assessment

Condition I: FiO2 21%

Condition II: FIO2 100%

Condition III: FiO2 100% + 20ppm NO

PVR < 3 OK

PVR 3-7 Borderline

PVR > 7 Inoperable

Thank you

atzifa@mitera.gr